Overview
The Object Mapper command provides functionality for:- Mapping fields between different data structures
- Transforming data formats
- Restructuring nested objects
- Combining data from multiple sources
- Creating new data structures from existing data
Command Type
Command Type ID: 1016Parameters
| Parameter | Type | Description | Required |
|---|---|---|---|
| input | string | Input data reference (e.g., @{PREVIOUS_OUTPUT}) | Yes |
| mapping | object | Field mapping configuration | Yes |
| outputKey | string | Key name for storing mapped result | Yes |
| defaultValues | object | Default values for missing fields | No |
Mapping Configuration
The mapping object defines how input fields map to output fields:Basic Mapping
Array Mapping
Usage Examples
Basic Field Mapping
Nested Structure Mapping
Array Transformation
Mapping with Default Values
Variable Support
The Object Mapper command supports variable interpolation in:- Input: Use
@{VARIABLE}to reference previous command output - Mapping Paths: Use JSONPath expressions in mapping configuration
Common Variable Patterns
- Previous Output:
@{PREVIOUS_OUTPUT}- Output from previous command - Extracted Data: Reference data from Json Path command
- Step Output:
@{STEP_OUTPUT}- Output from previous step
Output Structure
The Object Mapper command creates a new data structure based on the mapping configuration:Output Format
Using Mapped Data
Mapped data can be used by subsequent commands:Best Practices
- Use Descriptive Output Keys: Use clear, descriptive key names for mapped data
- Handle Missing Fields: Use default values for optional fields
- Test Mappings: Test mapping configurations with sample data
- Document Mappings: Document complex mapping logic for maintainability
- Validate Output: Verify mapped data structure matches expectations
Common Use Cases
- Data Transformation: Transform data structures for downstream processing
- Field Mapping: Map fields between different formats
- Data Restructuring: Restructure nested objects
- API Response Transformation: Transform API responses to internal format
- Data Normalization: Normalize data from different sources
Related Commands
- Json Path - Extract data before mapping
- JSON Parse - Parse JSON before mapping
- Sink Commands - Send mapped data to destinations
Troubleshooting
Mapping Errors
If mapping fails:- Verify input data structure matches mapping paths
- Check JSONPath expressions are correct
- Ensure output key is unique
Missing Fields
If mapped data has missing fields:- Use default values for optional fields
- Verify input data contains expected fields
- Check mapping paths are correct